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Abstract

We study the properties of palindromic quadratic matrix polynomials
ϕ(z) = P + Qz + Pz2, i.e., quadratic polynomials where the coefficients
P and Q are square matrices, and where the constant and the leading
coefficients are equal. We show that, for suitable choices of the matrix
coefficients P and Q, it is possible to characterize by means of ϕ(z) well
known matrix functions, namely the matrix square root, the matrix polar
factor, the matrix sign and the geometric mean of two matrices. Finally
we provide some integral representations of these matrix functions.

Keywords Palindromic matrix polynomial, quadratic matrix equation, ma-
trix function, matrix square root, polar decomposition, matrix sign, matrix
geometric mean.
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1 Introduction

Consider the function ϕ(z) : C −→ Cn×n defined as

ϕ(z) = P +Qz + Pz2, (1)

where P and Q are n × n complex matrices, and P is different from the null
matrix. The function ϕ(z) is a quadratic matrix polynomial, since ϕ(z) is a
matrix whose entries are polynomials of degree at most 2; moreover, since P is
different from the null matrix, there exists at least one entry of ϕ(z) which is
a polynomial of degree 2. Besides being a quadratic matrix polynomial, ϕ(z)
is palindromic, i.e., the constant coefficient is equal to the leading coefficient.
Therefore we will refer to ϕ(z) as a quadratic palindromic matrix polynomial
(QPMP). Throughout the paper we assume that the matrix Q is nonsingular.

Our interest in palindromic matrix polynomials concerns their relationship
with certain matrix functions. Matrix functions intervene in many applications,
ranging from stochastic processes to control theory, computer graphics, medical
diagnostics, and more. For a thorough treatise on matrix functions we refer the
reader to the book [9].

The specific matrix functions that we study are the principal matrix square
root, the matrix sign, the unitary polar factor and the geometric mean of two
positive definite matrices; these functions will be denoted by the symbols A1/2,
sign(A), polar(A) and A#B, respectively. We will call matrix function also the
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matrix geometric mean and the unitary polar factor, even though they are not
properly matrix functions according to the customary definition (see [9]).

These four matrix functions are deeply related to each other. For instance,
sign(A), polar(A) and A#B can be expressed in terms of suitable matrix square
roots (see [1, 9]):

sign(A) = A(A2)−1/2,

polar(A) = A(A∗A)−1/2,

A#B = A1/2(A−1/2BA−1/2)1/2A1/2.

Moreover, A1/2 and polar(A) can be expressed by means of the matrix sign (see
[9]):

sign
([

0 A
I 0

])
=
[

0 A1/2

A−1/2 0

]
,

sign
([

0 A
A∗ 0

])
=
[

0 polar(A)
(polar(A))∗ 0

]
,

sign
([

0 A
B−1 0

])
=
[

0 A#B
(A#B)−1 0

]
.

In this paper we show further and inner relationships among A1/2, sign(A),
polar(A) and A#B. A common feature of the four matrix functions is the strict
connection with the quadratic palindromic matrix polynomial (1).

Recently, much attention has been devoted in the literature [3, 12, 13, 15]
to theoretical and computational properties of a different kind of palindromic
matrix polynomials, namely the ?-palindromic matrix polynomials. A matrix
polynomial L(z) =

∑`
j=0Ajz

j is said to be ?-palindromic if Ai = A?`−i, for i =
0, . . . , `, where the symbol “?” denotes Hermitian transposition if the coefficients
belong to C, transposition if the coefficients belong to R. The interest in ?-
palindromic matrix polynomials is mainly addressed to the computation of their
roots, i.e., the solutions of the equation det(L(z)) = 0.

Here, we present some new results on QPMP of the form (1). In particular
we derive necessary and sufficient conditions for the existence and uniqueness
of a solution X∗ of the matrix equation

P +QX + PX2 = 0

with spectral radius at most one and which is a function of the matrix M =
Q−1P . In the case of existence and uniqueness we provide an explicit expression
of X∗ in terms of the coefficients P and Q.

When X∗ has spectral radius less than one, the Laurent matrix polynomial

L(z) = Pz−1 +Q+ Pz

is invertible in an annulus containing the unit circle, and its inverse H(z) =
L−1(z) has a power series expansion of the form

H(z) = H0 +
∞∑
i=1

Hi(zi + z−i).
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The constant term H0 has a special role in our analysis. Indeed, by extending
the result of [16], we show that for particular choices of the coefficients P and
Q, the matrix H0 coincides with one of the matrix functions A1/2, sign(A),
polar(A) and A#B. For instance, if P = 1

4 (A − B) and Q = 1
2 (A + B), then

H0 = A#B. This relationship with H0, besides being interesting per se, allows
one to give new integral representations of the four matrix functions. Finally, we
compare the new integral representations of A1/2, sign(A), polar(A) and A#B
with known integral representations of the same matrix functions. Surprisingly,
we find that the new and the known representations can be all derived from
the Cauchy integral formula for the principal inverse square root of a certain
matrix.

The paper is organized as follows. In Section 2 we recall some preliminary
definitions. Section 3 is devoted to the theoretical analysis of QPMPs. Section
4 concerns the relationships among QPMPs and A1/2, sign(A), polar(A) and
A#B: we specialize the results of Section 3 and characterize the four matrix
functions in terms of the constant coefficient of L(z)−1. We analyze the integral
representations in Section 5.

2 Preliminaries

We give some preliminary definitions and results about matrix functions and
matrix equations, which will be useful in the following sections.

In the following, given a complex number ζ ∈ C \ (−∞, 0), we will denote
by ζ1/2 the solution of the equation x2 = ζ having nonnegative real part. A
matrix square root of A is a matrix X satisfying the equation X2 = A. If A
has no nonpositive real eigenvalues, then there exists a unique matrix square
root whose eigenvalues have positive real part [4, 7]; such matrix square root
is called the principal matrix square root and is denoted by A1/2. If A has no
negative real eigenvalues and the eigenvalue 0 is semisimple, i.e., its algebraic
and geometric multiplicities coincide, then A has a unique matrix square root
whose nonzero eigenvalues have positive real part (compare [9, Exercise 1.24]).
We denote it by A1/2 and call it principal matrix square root as well.

Given A with no purely imaginary eigenvalues, let

J = V −1AV =
[
J− 0
0 J+

]
its Jordan decomposition, where the eigenvalues of J− have negative real part,
while the eigenvalues of J+ have positive real part. The matrix sign of A is
defined as

sign(A) = V

[
−Ip 0

0 Iq

]
V −1

where p is the size of J− and q is the size of J+ (see for instance [8, 9]).
Given a nonsingular matrix A, the unitary polar factor of A, denoted by

polar(A), is the unique matrix U such that

A = UH, U∗U = I,

where H is Hermitian positive definite (see [8, 9]).
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Given A and B Hermitian positive definite matrices, the matrix geometric
mean of A and B is defined as

A#B = A1/2(A−1/2BA−1/2)1/2A1/2,

or, equivalently, A#B = A(A−1B)1/2 (see for instance [1]).
Given a matrix A ∈ Cn×n and a (possibly complex valued) function f , which

is sufficiently regular, it is possible to define the matrix function f(A). Here we
recall a definition of f(A) and some important properties.

A definition of f(A) can be given in terms of the Jordan canonical form of
A, say M−1AM = J1 ⊕ · · · ⊕ Js, where Ji, for i = 1, . . . , s, is a Jordan block
of size ki corresponding to an eigenvalue λi (the λi’s do not need to be distinct
and k1 + · · ·+ ks = n).

We set f(A) = M(f(J1)⊕ · · · ⊕ f(Js))M−1, where

f(Ji) =


f(λi) f ′(λi) · · · f(ki−1)(λi)

(ki−1)!

f(λi)
. . .

...
. . . f ′(λi)

0 f(λi)

 ,

for i = 1, . . . , s. The definition makes sense if f is differentiable on λi up to the
order ki − 1, for i = 1, . . . , s.

The principal matrix square root and the matrix sign are matrix functions,
defined by f(z) = z1/2 and f(z) = sign(z), respectively. With an abuse of
notation, we will use the term matrix function also for the unitary polar factor
and for the matrix geometric mean.

We recall a useful theorem which is part of a general result on the relationship
between the Jordan canonical form of A and the one of f(A), whose complete
statement and proof can be found for instance in [10] or [14, Thm. 9.4.7]

Theorem 1. Let A ∈ Cn×n, let f be such that f(A) is well defined. Let λ be
an eigenvalue of A such that the Jordan canonical form of A has a nontrivial
Jordan block J(λ) of size k, corresponding to λ. If f ′(λ) 6= 0, then the Jordan
canonical form of f(A) has a Jordan block J(f(λ)) of size k.

From the above theorem, we deduce that if f is differentiable at λ and
f ′(λ) 6= 0, then λ is a semisimple eigenvalue of A if and only if f(λ) is a
semisimple eigenvalue of f(A).

Lemma 2. Let A be an n× n complex matrix. Then matrix I − 4A2 admits a
principal square root if and only if A does not have real eigenvalues of modulus
greater than 1/2 and the real eigenvalues of modulus 1/2 (if any) are semisimple.

Proof. The matrix W = I − 4A2 admits a principal square root if and only if
W does not have negative real eigenvalues and the null eigenvalues (if any) are
semisimple. The eigenvalues of W are the image under the function f(z) =
1−4z2 of the eigenvalues of A. Therefore, the matrix W does not have negative
eigenvalues if and only if the real eigenvalues (if any) of A belong to the interval
(−1/2, 1/2); the matrix W has a null eigenvalue if and only if A has a real
eigenvalue of modulus 1/2. In that case, since f ′(z) = 0 if and only if z = 0, by
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Theorem 1, the algebraic and geometric multiplicity of any nonzero eigenvalue
λ of A is the same as the algebraic and geometric multiplicity of f(λ) in f(A),
respectively. Therefore the two conditions are equivalent.

We recall some definitions and properties on matrix polynomials; we refer
the reader to the book [5] for a complete treatise on matrix polynomials. A
n × n matrix polynomial of degree ` is a polynomial L(z) =

∑`
j=0Ajz

j , where
the coefficients Ai, i = 0, . . . , `, are n× n matrices and A` is different from the
null matrix. The matrix polynomial L(z) is said regular is det(L(z)) does not
vanish identically. A scalar µ is called root of L(z) if det(L(µ)) = 0. We say
that L(z) has a root at infinity if µ = 0 is a root of rev(L(z)) =

∑`
j=0A`−jz

j .
An n× n regular matrix polynomial of degree ` has exactly n` roots, including
the roots at infinity.

3 Quadratic palindromic matrix polynomials

In this section we study the properties of the quadratic matrix polynomial
(QPMP)

ϕ(z) = P +Qz + Pz2, (2)

where P and Q are n×n complex matrices, P is different from the null matrix,
and Q is nonsingular. Sometimes it will be useful to analyze the properties of
the QPMP

ϕ̃(z) = M + Iz +Mz2,

where M = Q−1P , which is obtained by multiplying ϕ(z) on the left by Q−1.

3.1 Roots of the matrix polynomial

Observe that the function det(Mz−1 +I+Mz) can have only a finite number of
roots of moduls one. Therefore the QPMP (2) is a regular matrix polynomial.

Observe also that, if µ 6∈ {0,∞} is a root of ϕ(z), and if u is a non-zero vector
such that ϕ(µ)u = 0, then ϕ(µ−1)u = 0. Therefore the roots of ϕ(z), different
from 0 and∞, come in pairs (µ, µ−1). If we adopt the convention that 1/0 =∞
and 1/∞ = 0, then all the roots of ϕ(z) come in pairs (µ, µ−1). In particular if
det(ϕ(z)) 6= 0 on the unit circle, then ϕ(z) has exactly n roots µ1, . . . , µn in the
open unit disk, and n roots outside the closed unit disk, namely µ−1

1 , . . . , µ−1
n .

We can give more precise results on the roots of ϕ(z) by considering the
Jordan canonical form of the matrix M = Q−1P : let

K−1MK = J1 ⊕ J2 ⊕ · · · ⊕ Js, (3)

where Ji is a Jordan block of size ki corresponding to the eigenvalue λi. By
applying the similarity transformation of (3) to ϕ̃(z), we find that the roots
of ϕ(z) are the union of the roots of the PQMPs ϕi(z) = Jiz

2 + Iz + Ji, for
i = 1, . . . , s. On the other hand, since the matrices Ji are Jordan blocks of size
ki, one has

det(ϕi(z)) = (λiz2 + z + λi)ki . (4)

Therefore we recall the properties of the solutions z1 and z2 of the scalar palin-
dromic quadratic equation

λz2 + z + λ = 0, (5)
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where λ ∈ C, we assume |z1| 6 |z2|, and where we set z1 = 0, z2 =∞ if λ = 0.

Lemma 3. Equation (5) has two distinct solutions if and only if λ 6= ±1/2.
Moreover,

• if λ ∈ (−∞,−1/2] ∪ [1/2,+∞) then |z1| = |z2| = 1;

• if λ ∈ (C \ R) ∪ (−1/2, 1/2) then |z1| < 1 < |z2|.

Proof. If λ ∈ (−∞,−1/2] ∪ [1/2,+∞) then we may easily verify that z1,2 =
−1±i

√
4λ2−1

2λ , where i is the imaginary unit, have modulus equal to 1. If λ ∈
(C \ R) ∪ (−1/2, 0) ∪ (0, 1/2) then z1 + z2 = 1/λ 6∈ [−2, 2]. From the equality
z1z2 = 1 we deduce that |z1| 6 1 6 |z2|. If |z1| = 1 then z2 = z1, hence
|z2| = 1 and z1 + z2 ∈ [−2, 2]; the latter property is false for the hypotheses on
λ, therefore |z1| < 1, and hence |z2| > 1.

From the above lemma and from (4) we conclude that to each eigenvalue λi
of M , with associated a Jordan block of size ki, there correspond:

1. ki roots of ϕ(z) inside the open unit disk and ki roots of ϕ(z) outside the
closed unit disk, if λi ∈ (C \ R) ∪ (−1/2, 1/2);

2. 2ki roots of ϕ(z) of modulus 1 if λi ∈ (−∞,−1/2] ∪ [1/2,+∞).

In particular, if M does not have real eigenvalues of modulus greater than
or equal to 1/2, then the QPMP ϕ(z) has n roots in the open unit disk, and n
roots outside the closed unit disk.

3.2 Solutions of the matrix equation

We associate with ϕ(z) the palindromic quadratic matrix equation

PX2 +QX + P = 0, (6)

where the unknown X is an n × n matrix. Sometimes, it will be useful to
consider the equivalent matrix equation

MX2 +X +M = 0, (7)

where M = Q−1P .
Let X be a solution and let u be a non-zero vector such that Xu = µu.

Then, by multiplying (6) on the right by the vector u, we get

(Pµ2 +Qµ+ P )u = 0,

i.e., µ is a root of ϕ(z), and u is a vector in the kernel of ϕ(µ). Therefore the
eigenvalues of any solution X are a subset of the roots of ϕ(z).

We give conditions for the existence and uniqueness of a solution X having
spectral radius at most 1, which is a function of M . The case where M is a
Jordan block is treated by the following

Theorem 4. Let J be a Jordan block of dimension k, associated with the eigen-
value λ, and consider the matrix equation

JX2 +X + J = 0. (8)

The following properties hold:
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1. If λ ∈ (C \ R) ∪ (−1/2, 1/2), or if λ = ±1/2 and k = 1, then X =
−2J(I + (I − 4J2)1/2)−1 is the unique solution of (8) which is a function
of J , having spectral radius at most one.

2. If λ = ±1/2 and k > 1 then equation (8) does not have a solution which
is a function of J , having spectral radius at most one.

3. If λ ∈ (−∞,−1/2) ∪ (1/2,+∞) then equation (8) has more than one
solution which is a function of J , having spectral radius one.

Proof. If λ ∈ (C \ R) ∪ (−1/2, 1/2), or if λ = ±1/2 and k = 1, then the matrix
X = −2J(I + (I − 4J2)1/2)−1 is well defined by virtue of Lemma 2 and is a
function of J . By direct inspection one may verify that X is a solution of (8).
Moreover its eigenvalues are the image under z → −2z/(1 +

√
1− 2z2) of the

eigenvalues of J ; therefore the spectral radius of X is at most one.
If λ ∈ (C \R)∪ (−1/2, 1/2) then the k eigenvalues of X are the roots in the

open unit disk of ϕ(z) = Jz2 + Iz+ J . Therefore X is the unique solution with
spectral radius less than one (see for instance Section 3.3 of [5], or Theorem 3.18
of [2]).

If λ = 1/2 and k = 1, then the unique solution of (8) is X = −1. If λ = 1/2
and J has size k > 1, we show that equation (8) does not have solution. Assume
that X is a solution. Since the eigenvalues of X are a subset of the roots of
ϕ(z), which are all equal to −1, it follows that the only eigenvalue of X is
−1. Therefore the eigenvalues of the matrix Z = (I + X)(I − X)−1 are all
equal to 0; hence Zm = 0 for any m > k. On the other hand, by recovering
I + 2X and I − 2X from (8), one finds that Z2 = (I − 2J)(I + 2J)−1. By
direct inspection, one observes that

(
(I − 2J)(I + 2J)−1

)p 6= 0 for any p < k.
Therefore Z2(k−1) 6= 0, that contradicts the fact that Zm = 0 for any m > k.

The case λ = −1/2 is treated analogously.
If λ ∈ (−∞,−1/2)∪ (1/2,+∞) then, by Lemma 3 and (4), ϕ(z) has k roots

equal to z1 and k roots equal to z2, where z1 6= z2 and |z1| = |z2| = 1. The
matrices Y± = − 1

2J
−1(I ± i(4J2− I)1/2) are functions of J , and solve equation

(8). The unique eigenvalue of Y+ and Y− is z1 and z2, respectively. Therefore
Y+ 6= Y− and they both have spectral radius 1, so the solution is not unique.

An immediate consequence of the above result is the next theorem, which
shows that just the location of the eigenvalues of M = Q−1P gives necessary
and sufficient conditions for the existence of a unique solution X∗ of (6), which
is a function of M and with spectral radius at most one.

Theorem 5. Let P,Q be two square matrices, with Q nonsingular, and set
M = Q−1P . Then the following conditions are equivalent:

1. the matrix M does not have real eigenvalues of modulus greater than 1/2
and the real eigenvalues of modulus 1/2 (if any) are semisimple;

2. the matrix equation (6) has a unique solution X∗ which is a function of
M and whose eigenvalues lie in the closed unit disk; moreover, its explicit
expression is

X∗ = −2M(I + (I − 4M2)1/2)−1. (9)
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Proof. Consider the Jordan decomposition of M , given in (3). Any solution
X which is a function of M is such that K−1XK is block diagonal, with the
same block structure as K−1MK (see [9]). Therefore, by applying the similarity
transformation defined by K to equation (7), one obtains s uncoupled matrix
equations

JiY
2 + Y + Ji = 0, (10)

where Y has size ki. Equation (7) has a unique solution which is a function
of M and whose eigenvalues lie in the closed unit disk if and only if each of
the equations (10) has a unique solution Yi which is a function of Ji (the same
function for each Ji) and whose eigenvalues lie in the closed unit disk. In that
case the unique solution of (7) is X∗ = K(Y1 ⊕ · · · ⊕ Ys)K−1. The proof is
completed by applying Theorem 4 at each of the matrix equations (10).

Theorem 5 implies that, if condition 1 is satisfied, then X∗ is the unique
solution having spectral radius at most one, which is a function of M . Since the
eigenvalues of any solution X of (6) are a subset of the roots of ϕ(z), one deduces
that X∗ is a solution of smallest spectral radius, and it is the unique which is a
function of M . In fact, there might exist other solutions having spectral radius
at most one, which are not function of M , as shown by the following example.

Example 6. Consider the matrix equation

X2 + 2X + I = 0. (11)

For this equation M = 1
2I, therefore the only eigenvalue of the matrix M is 1/2,

which is semisimple. According to Theorem 5, X∗ = −I is the unique solution
of spectral radius at most 1, which is a function of M . On the other hand, if
n = 2, for any scalars x, y, with y 6= 0, the matrix

X =

[
x y

−x
2+2x+1
y −2− x

]
is a solution of (11) having spectral radius 1. Therefore equation (11) has
infinite solutions having spectral radius one, which are not function of M .

If the matrix M does not have real eigenvalues of modulus greater than or
equal to 1/2, then X∗ is the unique solution having spectral radius less than
one (see for instance [2, Theorem 3.18]) .

3.3 Laurent matrix polynomials

In this section we study the invertibility domain of the palindromic Laurent
matrix polynomial

L(z) = Pz−1 +Q+ Pz, (12)

which is obtained by multiplying ϕ(z) by z−1.
Let X∗ be defined in (9). Since X∗ commutes with M = Q−1P , one may

easily verify that the following factorization holds

Mz−1 + I +Mz = (I −X∗z)(I +MX∗)(I −X∗z−1), z 6= 0,

which implies

L(z) = (I −QX∗Q−1z)(Q+ PX∗)(I −X∗z−1), z 6= 0. (13)
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Lemma 7. The Laurent matrix polynomial (12) is invertible in an open annulus
containing the unit circle if and only if the matrix M = Q−1P does not have real
eigenvalues of modulus greater than or equal to 1/2. In that case the invertibility
domain of L(z) is the annulus AR = {R < |z| < 1/R}, where R = ρ(X∗), and
X∗ is defined in (9). Moreover, by setting L(z)−1 = H(z) =

∑+∞
i=−∞Hiz

i one
has Hi = H−i for i > 0 and

H0 = (I − 4M2)−1/2Q−1. (14)

Proof. If M does not have real eigenvalues of modulus greater than or equal
to 1/2, then from Theorem 5 and from the factorization (13) it follows that
the roots of detL(z) are the eigenvalues of X∗ and their reciprocals. Therefore,
since ρ(X∗) < 1, L(z) is invertible in the annulus AR, where R = ρ(X∗).
Conversely, if M has a real eigenvalue outside the interval (−1/2, 1/2), from
Lemma 3 the polynomial λz2 + z + λ has at least one root of modulus one,
therefore the function detL(z) has some roots on the unit circle, thus, L(z)
cannot be invertible on the unit circle. Since L(z) = L(z−1), one deduces that
H(z) = H(z−1), therefore Hi = H−i for i > 0. From (13) one has

H0 =
∞∑
i=0

Xi
∗(Q+ PX∗)−1QXi

∗Q
−1 =

∞∑
i=0

Xi
∗(I +MX∗)−1Xi

∗Q
−1.

Since M and X∗ commute, being X∗ a function of M (see [9, Thm. 1.13]), and
since ρ(X∗) < 1, from the above equality one obtains that

H0 = (I −X2
∗ )
−1(I +MX∗)−1Q−1 =

(
(I −X2

∗ )(I +MX∗)
)−1

Q−1

= (I +MX∗ − (X∗ +MX2
∗ )X∗)Q

−1 = (I + 2MX∗)−1Q−1.

Replacing X∗ with (9) yields (14).

4 Relationships with matrix functions

By extending a result of [16] on the matrix square root, it is possible to give a
functional interpretation of the matrix sign, the polar factor of a nonsingular
matrix and the matrix geometric mean of two positive matrices, in terms of
the quadratic palindromic matrix polynomial (2). If we write P = 1

4 (S − T ),
Q = 1

2 (S + T ), according to the properties of the matrices S and T , the con-
stant coefficient H0 of L(z)−1 provides the different matrix functions. To better
understand this fact, it is useful to introduce the notation

L(z;S, T ) =
1
4

(S − T )z−1 +
1
2

(S + T ) +
1
4

(S − T )z.

and
ξ(V ) = ρ((V − I)(V + I)−1),

where V is any matrix such that V + I is nonsingular, and ρ(·) denotes the
spectral radius.

The following theorem gives a functional interpretation of A1/2, sign(A),
polar(A), A#B, in terms of the constant coefficient H0 of the Laurent matrix
polynomial L(z;S, T )−1.
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Theorem 8. The following properties hold:

1. If A is a matrix having no nonpositive real eigenvalues, S = I and T =
A−1, then L(z;S, T ) is invertible in AR, where R = ξ(A−1/2), and H0 =
A1/2.

2. If A is a matrix having no imaginary eigenvalues, S = A−1 and T = A,
then L(z;S, T ) is invertible in AR, where R = ξ((A2)1/2), and H0 =
sign(A).

3. If A is nonsingular, S = A−1, T = A∗, then L(z;S, T ) is invertible in
AR, where R = ξ((AA∗)1/2), and H0 = polar(A).

4. If A and B are positive definite matrices, S = A−1 and T = B−1, then
L(z;S, T ) is invertible in AR, where R = ξ((B−1A)1/2), and H0 = A#B.

Proof. Part 1 has been proved in [16]. Part 2 follows from part 1, by observing
that A−1L(z; I, A2) = L(z;A−1, A); the constant coefficient of L(z; I, A2)−1

is (A−2)1/2, thus the constant coefficient of L(z;A−1, A)−1 is A(A−2)1/2 =
A(A2)−1/2 = sign(A).

Concerning part 3, as in the previous case, we observe that L(z;A−1, A∗) =
L(z; I, A∗A)A−1. The constant coefficient of L(z; I, A∗A)−1 is (A∗A)−1/2, thus
the constant coefficient of L(z;A−1, A∗)−1 is A(A∗A)−1/2 = polar(A).

Concerning part 4, since L(z;A−1, B−1) = L(z; I,B−1A)A−1, the constant
coefficient of L(z; I,B−1A)−1 is (B−1A)−1/2 = (A−1B)1/2, thus the constant
coefficient of L(z;A−1, B−1)−1 is A(A−1B)1/2 = A#B.

Table 1 synthesizes the results of Theorem 8:

H0 S T

A1/2 I A−1

sign(A) A−1 A
polar(A) A−1 A∗

A#B A−1 B−1

Table 1: The coefficient H0 of L(z;S, T )−1

5 Integral representations

We consider some integral representations for A1/2, sign(A), polar(A), A#B.
One of them is obtained as a byproduct of Theorem 8. Indeed, since the function
H(z) = L(z)−1 is convergent in an annulus containing the unit circle, from a
classic result on matrix Laurent power series belonging to the Wiener algebra
(see for instance Theorem 3.1 of [2]), one obtains

H0 =
1

2π

∫ 2π

0

H(eiϑ)dϑ,

where i is the imaginary unit. Observe that H(eiϑ) = (Q+ 2P cosϑ)−1. There-
fore one has

H0 =
1

2π

∫ 2π

0

(Q+ 2P cosϑ)−1
dϑ. (15)
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The latter equation, combined with Theorem 8, allows one to derive new
integral representations of A1/2, sign(A), polar(A), A#B. For instance, if P =
1
4 (A−1 −B−1) and Q = 1

2 (A−1 +B−1), we get

A#B =
1
π
A

(∫ 2π

0

(B −A+ (A+B) cosϑ)−1
dϑ

)
B.

Another interesting property is that the integral representation (15) and
many other integral representations which can be found in the literature can all
be obtained from the Cauchy formula for the inverse square root.

In fact, if V has no nonpositive real eigenvalues, the Cauchy formula yields

V −1/2 =
1

2πi

∫
γ

ζ−1/2(ζI − V )−1dζ,

where γ is the Hankel contour (compare [6, p. 458]) that goes from −∞ to 0
and back.

Each of the matrix functions A1/2, sign(A), polar(A), A#B can be expressed
in the form F = UV −1/2, for suitable matrices U and V . Therefore each matrix
function has the integral representation

F =
U

2πi

∫
γ

ζ−1/2(ζI − V )−1dζ, (16)

where the matrices U and V are given in Table 2.

F U V

A1/2 A A
sign(A) A A2

polar(A) A A∗A
A#B A A−1B

Table 2: U and V in the integral representations

Formula (16) allows one to derive and generalize specific representations well
known in the literature. Indeed, the substitution t = iζ1/2 leads to the formula

F =
2
π
U

∫ ∞
0

(t2I + V )−1dt,

which, for U = A and V = A2, yields the representation of the matrix sign
given in [11].

The change of variable ϕ = tan(t) yields

F =
2
π
U

∫ π/2

0

(sin2 ϕ I + cos2 ϕ V )−1dϕ.

In the specific case where F = sign(A) we rediscover the integral representation
of the matrix sign function given in [11].

The change of variable ψ = π/2− ϕ yields

F =
2
π
U

∫ π/2

0

(cos2 ϕ I + sin2 ϕ V )−1dϕ. (17)
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The substitution ϑ = 2ϕ and the bisection formulae for the sine and cosine
lead to

F =
2
π
U

∫ π

0

((V + I) + cosϑ(V − I))−1dϑ.

By using the symmetry of the cosine function, one obtains

F =
U

π

∫ 2π

0

((V + I) + cosϑ(V − I))−1dϑ,

which leads to equation (15).
Another interesting representation can be obtained setting t = cosϕ in equa-

tion (17):

F =
1
π
U

∫ 1

0

((1− t)I + tV )−1√
t(1− t)

dt.

In the specific case where F = A#B we obtain the integral representation of
the matrix mean, proved in [1] by using an Eulerian integral.

Finally, by setting s = 2t− 1, one obtains the formula

F =
2
π
U

∫ 1

−1

((1− s)I + (1 + s)V )−1

√
1− s2

ds.

which is well suited for the Gauss-Chebyshev quadrature.
Therefore, by starting from (16) and by performing specific changes of vari-

ables, we have seen in a unifying framework specific known integral representa-
tions of the matrix functions A1/2, sign(A), polar(A), A#B.
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